语言动作不是简单的固定原语,而是根据当前任务和场景的具体情况通过指令和视觉观察来学习的。比如,「手臂向前伸」并没具体说明移动的速度或方向,这取决于具体任务和观察情况。学习到的语言动作的上下文依赖性和灵活性为我们提供了新的能力:当策略未能百分百成功时,允许人们对语言动作进行修正(见图1中橙色区域)。进一步地,机器人甚至可以从这些人类的修正中学习。例如,在执行「拿起可乐罐」的任务时,如果机器人提前关闭了夹爪,我们可以指导它「保持手臂前伸的姿势更久一些」,这种在特定场景下的微调不仅易于人类指导,也更易于机器人学习。
(来源:站长之家)
免责声明:本站文章部分内容为本站原创,另有部分容来源于第三方或整理自互联网,其中转载部分仅供展示,不拥有所有权,不代表本站观点立场,也不构成任何其他建议,对其内容、文字的真实性、完整性、及时性不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容,不承担相关法律责任。如发现本站文章、图片等内容有涉及版权/违法违规或其他不适合的内容, 请及时联系我们进行处理。